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Abstract 

When randomized control trials are not available, regression discontinuity (RD) designs are a 

viable quasi-experimental method shown capable of producing causal estimates of how a 

program or intervention affects an outcome.  While the RD design and many related 

methodological innovations came from the field of psychology, RDs are underutilized among 

psychologists even though many interventions are assigned on the basis of scores from common 

psychological measures, a situation tailor-made for RDs.  In this tutorial, we present a 

straightforward way to implement an RD model as a structural equation model (SEM).  By using 

SEM, we both situate RDs within a method commonly used in psychology, as well as show how 

RDs can be implemented in a way that allows one to account for measurement error and avoid 

measurement model misspecification, both of which often affect psychological measures. We 

begin with brief Monte Carlo simulation studies to examine the potential benefits of using a 

latent variable RD model, then transition to an applied example, replete with code and results.  

The aim of the study is to introduce RD to a broader audience in psychology, as well as show 

researchers already familiar with RD how employing an SEM framework can be beneficial.  

 Keywords: Structural equation modeling (SEM), regression discontinuity, quasi-

experimental designs, instrumental variables, measurement error, treatment effects. 

 

 

  



Regression Discontinuity Designs in a Latent Variable Framework 

 Randomized control trials (RCTs) are the gold standard when evaluating interventions 

and programs in psychology, as well as related disciplines like education and medicine. 

However, RCTs are often not feasible due to practical, logistical, financial, or other 

impediments.  In such cases, there may be quasi-experimental alternatives that exploit random 

variation in how study participants are assigned to receive a treatment, participate in a program, 

or undergo an intervention (Imbens & Rubin, 2017).  A particularly rigorous quasi-experimental 

option is regression discontinuity or RD (Imbens & Lemieux, 2008).  RDs are ideal for cases in 

which program or intervention participation is assigned using a clear threshold on a particular 

measure, such as when, say, participants receive a treatment if their income is below a certain 

threshold. If one assumes that participants just on either side of the cut score are identical except 

for measurement error on the test or other metric upon which the treatment determination is 

made, then they are as good as randomly assigned to treatment. A key advantage of the RD is its 

high internal validity from addressing omitted variable bias (Angrist & Pischke, 2009), though 

inferences about the treatment are limited to participants near the cut score, potentially reducing 

generalizability.1 

 Yet, even though many methodological developments germane to the RD model have 

been described and addressed by psychologists, and despite loosely related methods being 

employed in psychology (e.g., Sequential Multiple Assignment Randomized Trial or SMART 

[Lei et al., 2012]), the method is underutilized in the field (Cook, 2007).  For example, Moscoe 

et al. (2015) pointed out that RDs are underutilized in public health, and especially in psychiatry, 

 
1 One should note that internal validity is only strong when the RD assumptions are met, which is not guaranteed.  

Further, rather than estimating average treatment effects (ATEs) as RCTs do, RDs estimate local average treatment 

effects (LATEs) using data just on either side of the cut score; this is an important limitation to the RD’s external 

validity. 



where drug regimens are often prescribed on the basis of cut scores. Similarly, Cook (2007) 

argued that RDs suffer from misunderstandings of their limitations and uses that reduce their 

application in psychology despite how often interventions are based on cut scores developed for 

clinical purposes, creating ideal circumstances for an RD.  There are also likely substantive 

reasons RDs are not used in psychology. For instance, such designs only allow one to estimate a 

treatment effect for participants proximal to the cut score, which may not be the estimand of 

interest in some psychological studies.  Further, descriptive studies appear more common in 

psychology than in fields like economics, due both to the substantive questions of interest and 

complexities of study designs, which would make RDs less relevant in those cases. Nonetheless, 

the common use of cut scores for clinical purposes and frequent desire for causal estimates in 

psychological likely mean RDs are underutilized in the field, with RDs still “waiting for life to 

arrive in psychology” (Cook, 2007, p. 643).   

 An additional possible reason for the underutilization of RD in psychology may be that 

related models are most often presented in an econometric framework.  Such econometric 

models are not typically presented in a way familiar to researchers in psychology, nor are they 

designed specifically for use when the dependent variable is a short survey scale, which are 

commonly employed in psychology.  Yet, as we show, RDs can be straightforwardly 

implemented in a structural equation modeling (SEM) framework that is likely more familiar to 

quantitative psychologists and can include a measurement model for the dependent variable that 

can help account for the imperfections in the outcome measures used.   

Including a measurement model is especially important given growing evidence that 

using sum scores can produce very different results (e.g., reliability coefficients, rank orderings 

of respondents) when their assumptions are violated compared to using a factor model making 



less stringent assumptions (Kuhfeld & Soland, 2020; McNeish & Wolf, 2020). Yet, evidence 

suggests sum scores are nonetheless used in the majority of studies within psychology (Flake et 

al., 2017).  Moreover, when meeting or missing the cut score in an RD does not guarantee 

receiving treatment (e.g., not all patients falling below a cut score on a depression diagnostic 

receive medication and the decision is made at the doctor’s discretion), instrumental variables 

(IVs) are typically used and can easily be accommodated in an SEM framework. Despite these 

benefits, RDs are rarely if ever estimated using SEM, though there are several examples that 

blend other quasi-experimental approaches (especially propensity score methods) with SEM 

(Leite et al., 2019; Raykov, 2012; Rodríguez De Gil et al., 2015).   

 In this context of underuse of RDs within psychology, our own study has two broad 

purposes.  First, we explore some of the potential benefits of estimating RDs in an SEM 

framework when the outcome of interest is captured using multiple indicators measured with 

error (e.g., survey item responses).  We illustrate these benefits using first principles, then 

conduct brief simulation studies to investigate the magnitude of those potential benefits more 

concretely.  Second, given these benefits, we provide a detailed demonstration of how to 

implement RDs in an SEM framework.  In both simulation studies and the demonstration, we 

focus on latent variables for the outcome and not the measure used to assign participants to 

treatment because accounting for measurement error in the latter involves much more complex 

considerations (as described in the discussion section). Our goal is to make the usefulness of RD 

methods more apparent to researchers in psychology and the methods more accessible, as well as 

provide a way to implement an RD that includes a measurement model when survey scores or 

other like measures are the dependent variable.  In our demonstration, code to estimate the RD in 

an SEM is provided in Mplus and Stata along with the accompanying data.   



Background 

The Logic of RD Designs 

 The concept behind RD designs is fairly intuitive.  When an RCT is not possible, one can 

still potentially generate causal claims about the impact of treatment through so-called “natural 

experiments.”  In an RD framework, this occurs when assignment to treatment is based on a 

metric with a clear cut score.  As an example, medicine to treat psychological conditions is often 

prescribed using cut scores from common diagnostic measures (Moscoe et al., 2015), and some 

interventions are provided partly on the basis of income (Miranda et al., 2002). If one assumes 

that, in the medication example, patients within a point or two of the cut score are virtually 

identical given measurement error, then patients very near the cut score are as good as randomly 

assigned to receive the medication.  Thus, estimates of how the patients’ conditions improve for 

those just above or below the cut score can provide a plausibly causal estimate of the 

medication’s effect. Such designs can allow for causal claims, but only for participants near the 

cut score (a limitation with implications for external validity), and only when the assumptions of 

the RD are met, which one can examine empirically (as we show in the demonstration).    

In terms of the specific RD model, let 𝑟𝑖 be the forcing variable for person i (also referred 

to as the “running variable” or the “rating variable”, the diagnostic measure in our medication 

example) in a given sample.  This forcing variable must be continuous or semi-continuous with 

discrete values, such as test scores with integer values (see Lee and Card [2008] and Kolesár and 

Rothe [2018] for using semi-continuous forcing variables). Let 𝑟∗ be the cut score for this 

variable (also called the treatment threshold).  Oftentimes, 𝑟𝑖 is centered at 𝑟∗ such that 𝑟∗ = 0, 

which makes interpretation of regression coefficients more straightforward.  A participant 𝑖’s 

assigned treatment is represented by 𝑧𝑖 such that 



𝑧𝑖 = I{𝑟𝑖  ≥ 𝑟∗} = { 
1 𝑖𝑓 𝑟𝑖  ≥ 𝑟∗

0 𝑖𝑓 𝑟𝑖 <  𝑟∗   (1) 

For now, we will assume that 𝑧𝑖 is equal to 𝑡𝑖, the treatment the participant actually experiences.  

If our observed (sum) score on the outcome of interest is denoted as 𝑜𝑖, then a basic parametric 

RD formulation2 might be:   

𝑜𝑖 = 𝛽0 +  𝛽1𝑟𝑖 + 𝛽2𝑡𝑖 + 𝛽3𝑡𝑖𝑟𝑖 +  𝜖𝑖   (2) 

where 𝜖𝑖 ~ 𝒩(0, 𝜎2).  In the above, 𝛽1 represents the unit change in the outcome for every one-

unit change in the forcing variable, 𝛽2 represents the mean treatment effect (the parameter of 

interest, generally), and the interaction term, 𝛽3𝑡𝑖𝑟𝑖, allows for the slope to differ on either side of 

the cut score.  Further, quadratic terms or higher order polynomials can be added that are the 

same or different on either side of the cut score.  Estimates are only unbiased if the functional 

form correctly models the relationship between treatment status and the outcome on both sides of 

the cut score. 

The RD design estimates local average treatment effects (LATEs) using data with forcing 

variable values near the cut score. Results are thus influenced not only by the choice of 

functional form of the model, but also the bandwidth used to estimate the treatment effect.  The 

bandwidth refers to how wide a range of the forcing variable around the cut score is used to fit 

the local linear regression.  For example, we could use observations with scores on 𝑟𝑖 within one 

standard deviation (SD) of the cut score to estimate treatment effects, assuming the functional 

form for those in this bandwidth matches the functional form for those very near the cut score. 

 
2 Given our focus on applied uses of RD designs, we do not present the nonparametric form of the model here. 

Angrist and Pischke (2009) identified several challenges associated with the nonparametric approach to RD and 

highlighted that most applied RD work is parametric, and sophisticated nonparametric RD methods have not yet 

found wide application in empirical practices. However, nonparametric presentations of the model can be vital to 

understanding the causal assumptions of the model. Interested readers can consult not only Angrist and Pischke 

(2009), but also Hu and Schennach (2008) and Hahn, Todd, and Van der Klaauw (2001). 



The choice of bandwidth involves a tradeoff between bias and precision in the estimation, with 

implications for internal and external validity.  Fortunately, data-driven approaches to calculating 

optimal bandwidths can be found in Cattaneo et al. (2018), Cattaneo et al. (2019), and Imbens 

and Kalyanaraman (2012).  

Sharp Versus Fuzzy RD 

Until now, we have assumed that 𝑧𝑖 = 𝑡𝑖, which may be feasible in some constrained 

contexts (e.g., lab studies).  That is, if everyone assigned to treatment based on the cut score 

actually undergoes treatment, then this proposition holds.  This scenario is commonly referred to 

as a “sharp RD”.  However, sometimes 𝑧𝑖 does not equal 𝑡𝑖, which necessitates a “fuzzy RD.” 

For instance, psychologists might combine their own professional judgment with the results from 

a diagnostic measure.  As a result, some patients who would be assigned to treatment based on 

the cut score do not actually receive treatment and some who would be assigned to control based 

on the cut score receive treatment anyway. In such a situation, one could simply estimate a 

treatment effect for those who actually received treatment, (i.e., for whom 𝑡𝑖 = 1).  However, 

such an estimate would be biased if an unobserved variable was correlated with whether the 

study participant complied with assignment to treatment and the outcome of interest, resulting in 

omitted variable bias. 

To avoid such bias, IVs are used to account for a potential correlation between treatment 

status and the outcome of interest. Here, the assignment, 𝑧𝑖, serves as the instrument that affects 

the outcome only through its effect on the actual treatment status, 𝑡𝑖.  This exclusion of a direct 

causal link between the instrument and the outcome is called the “exclusion restriction” and 

helps address concerns about omitted variable bias.  That is, we can estimate the indirect effect 

of 𝑧𝑖 through 𝑡𝑖 on the outcome, which does not suffer from selection bias, and use that indirect 



effect to produce an unbiased estimate of the direct effect of the treatment.  In most econometric 

research, IV treatment effects are estimated through a two-stage least squares (2SLS) approach. 

In the first stage, the treatment status (i.e., whether treatment was received) is regressed on the 

whether the participant was assigned to treatment and other exogenous covariates, then the 

predicted values of 𝑡𝑖 are saved. In the second stage, the outcome of interest is regressed on the 

predicted value of treatment status from the first stage plus other exogenous covariates.3 

RDs in a Latent Variable Framework 

One can also express an RD as an SEM that directly incorporates latent variables. An 

example for the sharp RD is shown in Figure 1(a). In that figure, 𝑦𝑖1 through 𝑦𝑖4 are observed 

indicators of the construct of interest (e.g., scores from four different clinical measures or survey 

items) and 𝜂𝑖 is a latent variable underlying those observed indicators that measures the outcome 

of interest.  Here, we assume the functional form is the same on either side of the cut score and 

that there are no polynomials in the model (both done for simplicity). 

 
3 In several cases, 2SLS software generates predicted values of 𝑡𝑖 by calculating the probability of a positive 

outcome, while other software/approaches use the linear prediction. These differences can lead to discrepant 

scalings of the treatment effect estimate, an issue we address in our demonstration.   



 

Figure 1(a). Path diagram for the latent sharp RD model. 

One could express such a path diagrams in equations by having a measurement model for 

person i and indicator j:   

𝒚𝑖 =  𝒗 +  𝝀𝜂𝑖 + 𝝐𝑖   (3) 

Where 𝒚𝑖 is an 𝑁 𝑥 1 vector of observed indicator scores/item responses for indicators/items 

1… 𝑁, 𝒗 is an 𝑁 𝑥 1 vector of intercepts, 𝝀 is an 𝑁 𝑥 1 vector of loadings, 𝜂𝑖 is the single latent 

variable for person i, and 𝝐𝑖 is an 𝑁 𝑥 1 vector of residuals (each with a mean of zero) where 

𝑉𝐴𝑅(𝝐𝑖) = 𝛉 = 𝑑𝑖𝑎𝑔(𝜃11, 𝜃22 … 𝜃𝑁𝑁).  Meanwhile, the structural model is 

𝜂𝑖 = 𝛼 + 𝛾1𝑡𝑖 + 𝛾2𝑟𝑖 + 𝜁1𝑖    (4) 

with true score variance 𝜙.   

One could expand this path diagram to include a fuzzy RD design with an IV per Figure 

1(b). Unlike in the 2SLS approach, both stages are estimated simultaneously, with treatment 

status and the outcome of interest included as dependent variables in the same model (Murnane 

& Willett, 2010). As the figure shows, there is a path from 𝑧𝑖 to 𝑡𝑖, but no covariance between 𝑧𝑖 



and 𝜂𝑖 otherwise—a visual representation of the exclusion restriction.  That is, 𝑐𝑜𝑣(𝑧𝑖, 𝜂𝑖 = 0). 

Further, in this path diagram, the correlation in the error terms between 𝜂𝑖 and 𝑡𝑖 is expressed 

directly and estimated with the assumption that 𝑐𝑜𝑣(𝑡𝑖, 𝜂𝑖 ≠ 0). As we discuss below, there are 

several potential benefits to estimating an RD using the below framework. 

 

Figure 1(b). Path diagram for the latent fuzzy RD model. 

Potential Benefits of Using a Latent Variable Model to Estimate an RD 

Measurement Model Misspecification When Using Sum Scores.  A primary argument in 

favor of using an SEM to estimate an RD is to avoid using sum scores when their assumptions 

are violated. McNeish and Wolf (2020) demonstrated that sum score approaches are the 

equivalent of fitting a highly constrained measurement model that assumes (often wrongly) that 

indicators should be weighted equally (typically by constraining loadings equal) and that the 

error terms are equivalent across indicators.  As research has shown, such misspecification of the 

measurement model used to score the dependent variable can lead to wildly different parameter 

estimates compared to when a measurement model that is not misspecified is used, including 



treatment effect estimates (Authors, in press; Bauer & Curran, 2015; Kuhfeld & Soland, 2020; 

McNeish & Wolf, 2020).  To be clear, while estimates based on sum scores versus latent 

variables can differ due to simple linear or monotonic transformations between the two, that is 

not always what we describe here. Rather, the scenario we describe involves using a sum score 

that assumes equal weighting of the indicators (loadings) when the data-generating model 

involves weights that are not equal. While one could technically use a weighted sum score, 

where each indicator is weighted in proportion to its loading, and such scores would have the 

property of being sufficient for the actual latent variable being measured, in practice, sum scores 

virtually always involve constraining the weights of the indicators equal.  

Use of sum scores (or observed measures in general) to produce the dependent variable 

could lead to different treatment effect estimates in an RD compared to using a less constrained 

measurement model.  Let us return to Equation 4. For now, to focus on recovery of true 

treatment effects, we will drop 𝛾2𝑟𝑖 from the model, but what follows would still stand if the 

term were included (and could even further complicate the differences between sum scores and 

measurement models that do not constrain the loadings equal).  If we assume 𝒗 is a vector of 

zeros (done for convenience, though not necessary) and 𝛼 is zero (i.e., the mean 𝜂𝑖 for the 

control group is zero) and substitute the structural equation into the measurement equation, we 

get   

𝒚𝑖 =   𝝀(𝛾1𝑡𝑖 +  𝜁𝑖) + 𝝐𝑖   (5) 

Given 𝐸(𝜁𝑖) = 0 and 𝐸(𝝐𝑖) =  0,  

𝐸(𝒚𝑖) = 𝐸(𝝀(𝛾1𝑡𝑖 +  𝜁𝑖) + 𝝐𝑖) = 𝝀𝛾1𝐸(𝑡𝑖)    (6) 



Since 𝑡𝑖 = 0 for the control group, the expectation of the vector of observed scores for the 

control group 𝐸(𝒚𝑖) is simply an 𝑁 𝑥 1 vector of zeros. Meanwhile, 𝐸(𝒚𝑖) for the treated group 

is  

𝐸(𝒚𝑖 |𝑡𝑖 = 1)  = 𝝀𝛾1𝐸(𝑡𝑖) =  𝝀𝛾1        (7) 

Thus, one could express the difference in the expectation of the observed scores between control 

and treatment groups as 

𝐸(𝒚𝑖 |𝑡𝑖 = 1) −  𝐸(𝒚𝑖 |𝑡𝑖 = 0)  = 𝐸(𝒚𝑖 |𝑡𝑖 = 1) −  0 = 𝝀𝛾1   (8) 

As Equation 8 shows, the difference in the means of the control and treatment observed 

scores would be the true treatment effect, 𝛾1, weighted by the loadings.   

If the loadings are below one, the true control-treatment differences would be larger than 

the observed (and vice-versa).  Thus, when one uses an observed mean difference like with a 

sum score, those observed scores can misweight the indicators such that treatment effect 

estimates will differ compared to when the indicator weights are accounted for in the 

measurement model. Further, if one does not assume 𝛾2 = 0, then additional differences could 

be introduced into the estimate of the coefficient on 𝑟𝑖 by failing to account for those weights. 

Note that differences between the estimates of the treatment effect between sum scores and less 

constrained measurement models result from the violation of statistical/parametric assumptions 

in the measurement model when using sum scores. That is, if a researcher assumes the sum score 

is correct, or if the indicator weights are indeed equal in the data-generating model (such as when 

using the Rasch Item Response Theory [IRT] model to score achievement tests), then the issue is 

not consequential. In our analyses, we generally assume the researcher cares about the causal 

inference with respect to the latent variable, and that the true loadings are not equal. 



Measurement Invariance Failures and Response Shifts. Another benefit of the latent 

variable approach to estimating RDs is addressing measurement invariance failures. This issue is 

especially important given growing evidence that participating in an intervention can actually 

induce measurement noninvariance in the dependent variable by changing how treated 

individuals perceive the construct of interest (Oort, 2005; Oort et al., 2005).  For instance, recent 

research on the effect of an invasive surgery for cancer patients found that accounting for these 

“response shifts” meaningfully changed estimates of physical health pre- and post-treatment. 

(Oort, 2005; Oort et al., 2005).  There is similar evidence that response shifts have impacted 

outcomes in depression studies (Fokkema et al., 2013).  Such measurement inconsistencies 

across groups (measurement noninvariance), including control and treatment groups, can be 

addressed in an SEM framework in a way that largely mitigates any resultant bias in treatment 

effect estimates (Oort, 2005), but are harder to address using sum scores.4   

 The potential effects of measurement invariance failures between control and treatment 

can also be expressed mathematically.  If we return to Equation 5 above, but no longer assume 𝛼 

and 𝒗 are zero (or a vector of zeros for 𝒗), then we would have 

𝒚𝑖 =   𝒗 + 𝝀(𝛼 +  𝛾1𝑡𝑖 +  𝜁𝑖) + 𝝐𝑖   (9) 

Given 𝐸(𝜁𝑖) = 0 and 𝐸(𝝐𝑖) =  0,  

𝐸(𝒚𝑖) =  𝐸(𝒗 + 𝝀(𝛼 +  𝛾1𝑡𝑖 + 𝜁𝑖) + 𝝐𝑖) = 𝒗 +  𝝀𝛼 +  𝝀𝛾1𝐸(𝑡𝑖)    (10) 

If one assumes measurement invariance between control and treatment groups, one could express 

the vector of differences in mean observed scores as 

𝐸(𝒚𝑖 |𝑡𝑖 = 1) −  𝐸(𝒚𝑖 |𝑡𝑖 = 0)  =    (11) 

 
4 While one could perform differential item functioning (DIF) analyses using sum scores and potentially drop items 

showing DIF, directly accounting for noninvariance is otherwise more complicated with sum scores than when using 

SEM.   



(𝒗 +  𝝀𝛼 +  𝝀𝛾1) −  (𝒗 +  𝝀𝛼) =   𝝀𝛾1    

However, if there is noninvariance in the intercepts or loadings between the groups such that 

measurement model parameters have a g subscript, we would have 

𝐸(𝒚𝑖 | 𝑡𝑖 = 1) −  𝐸(𝒚𝑖 | 𝑡𝑖 = 0)  =    (12) 

(𝒗𝑔 +  𝝀𝑔𝛼 +  𝝀𝑔𝛾1) −  (𝒗𝑔 + 𝝀𝑔𝛼) 

Hypothetically, if the loadings were lower for the control group than the treatment group, then 

the vector of differences in mean observed scores between control and treatment groups would 

be larger than the true vector. Further, wrongly assuming the loadings are equal between control 

and treatment would interact with differences in estimates already introduced by failing to 

weight the indicators properly when using observed mean differences (Equation 8).  Finally, 

noninvariance in the intercepts between groups would also introduce bias into the vector of 

observed mean differences. The impact of such measurement invariance failures on recovery of 

true treatment effects in RCTs has been examined via simulation study and shown to impact 

estimated treatment effects (Authors, in press). 

 Additional Benefits and Limitations to Using a Latent Variable Model.  While we 

highlight two of the main reasons using a latent variable framework for RDs is beneficial, there 

are other possibilities, as well as potential limitations.  For example, another potential benefit 

relates to power. Using a latent variable model could account for measurement error in the 

dependent variable and thereby plausibly reduce the standard error on a treatment effect, helping 

avoid Type 2 errors.  (One could also use a latent variable for covariates and reduce attenuation 

of the related coefficient, but that is not our focus in this study.)  Using a more efficient estimator 

is important given RD studies are often underpowered since participants not in the bandwidth 



must be removed (Schochet, 2009).  However, there are also reasons for which this notion might 

not hold, including that latent variable models will add uncertainty relative to sum scores given 

that scores are not treated as known with a simultaneous estimation approach.  Further 

complicating the picture, the first two sum score issues we mentioned (model misspecification 

and ignoring response shifts) would also likely impact Type 2 error rates, as we show in our 

simulation studies. 

There is also a potential limitation of using a latent variable framework that bears 

mention.  Specifically, the benefits all assume that one has properly specified the measurement 

model.  There is evidence that if one does not properly specify the model, then treatment effects 

can be biased, so much so that using an observed/sum score might be preferable (Rhemtulla et 

al., 2020). Thus, fitting RDs as SEMs requires due diligence to safeguard against measurement 

model misspecification.   

In what follows, we conduct two brief simulation studies to examine the specific 

magnitude of the benefits to using a latent variable model like the one we showed 

mathematically above, including whether any observed benefits are large enough to be of 

practical significance to researchers. The first simulation study examines the impact of using a 

sum score model versus a latent variable RD model for the recovery of true treatment effects 

under differing violations of assumptions implicit to sum scores.  This first study varies 

measurement model parameters such that using a sum score represents a more or less egregious 

form of model misspecification dependent on the given condition. The second examines how 

much accounting for potential measurement invariance failures between control and treatment 

improves the recovery of true treatment effects compared to using a sum score that ignores 

noninvariance. 



Simulation Study 1. Sum Score Use 

In this first of two simulation studies, we simulated RDs in an SEM framework and 

examined the effects of using a sum score model to estimate treatment effects when the 

assumption of equal indicator weights is violated.  The path diagram in Figure 1(b) served as our 

baseline generating model.  That same figure but with data-generating parameters included is 

shown in Figure 2.  As the figure shows, there is a single latent variable of interest.  That variable 

is measured using four observed indicators, 𝑦𝑖1 − 𝑦𝑖4.  There is a true treatment effect of .20.  

The loadings and residuals differ by indicator.  While the figure presents a fuzzy RD, the same 

model is used to create a sharp RD, but with all paths from 𝑧𝑖 and 𝑟𝑧𝑖, the correlation between 𝜁1𝑖 

and 𝜁2𝑖, and the path from 𝑟𝑖 to 𝑡𝑖 constrained to zero. Thus, we explore the effects of using a 

sum score on both sharp and fuzzy designs when the indicator weights in the data-generating 

model are not equal.  

 

Figure 2. Path diagram for the data-generating fuzzy RD model. 



In the study, we varied two main variables: the number of participants (simulees) within 

the bandwidth,5 and the values of 𝝀.  Sample sizes ranged from 200 to 500 participants within the 

bandwidth (in increments of 100), and were selected to range from those of small, likely 

underpowered studies to those of fairly large studies.  Loadings were varied to range from cases 

where the latent variable explains a high proportion of the variance in the observed indicators to 

cases where that explained variance was low, and to have bigger or smaller gaps in the loadings 

across measures within a given condition. Specifically, while the first loading was always fixed 

to one, the other loadings ranged from .6 to .8 in the first condition, .5 to .7 in the second 

condition, and .4 to .6 in the third condition. Thus, sum scores that wrongly fix the loadings to be 

equal would likely have differing effects on the estimated treatment effect (as shown in Equation 

8).6   

 Once the data were generated, we estimated treatment effects in two ways.  In the first, 

we fit an SEM that matched the generating process to the data. In the second, we fit a similar 

model, but using sum scores to represent the dependent variable.  To avoid scale indeterminacy 

in the dependent variable that can result by using sum scores, the sum scores were produced by 

fitting a highly constrained measurement model akin to the one described by McNeish and Wolf 

(2020).  Specifically, we constrained all the loadings equal and set 𝜃11 =  𝜃22 = 𝜃33 = 𝜃44.  To 

ensure this approach matched the use of actual sum scores, we also produced mean scores based 

on the generated indicator responses, and results matched those produced using our highly 

constrained SEM.   

 
5 Here, the bandwidth stays the same (e.g., 1.5 SDs in units of 𝑟𝑖) and we are adding/subtracting the number of 

simulees with data in the bandwidth. 
6 Using McDonald’s ω (McDonald, 2013), reliabilities ranged from a high of .86 to a low of .73. Thus, while we 

varied the loadings substantively across replications, all of the measures demonstrated plausible reliabilities for short 

survey scales used in practice. 



All conditions were replicated 1,000 times in Mplus version 8.4 (Muthen & Muthen, 

2017). Treatment effects based on simulated data were estimated using a Weighted Least 

Squares Means and Variance (WLSMV) adjusted estimator when the fuzzy RD model was fit, 

but maximum likelihood when the sharp model was fit. This difference occurred because 

treatment status (a binary variable) was dependent in the fuzzy specification, but independent in 

the sharp.7 In all cases, the observed indicators used to measure the latent variable were 

continuous, and we assume the latent variable was as well. Across models, the scale of the latent 

variable was determined by constraining the loading on the first indicator to 1 (matching the 

parameter).   

Finally, estimated treatment effects were examined in several ways.  We began by 

examining the mean and variance of the estimated treatment effects across all replications and 

scoring approaches (SEM versus sum score). For each set of conditions, we examined parameter 

bias. Estimated bias was defined as (𝜔̅ − 𝜔), where 𝜔 is the parameter of interest, 𝜔̅ =

𝑀−1 ∑ 𝜔̂𝑚
𝑀
𝑚=1  and 𝑀 is equal to the number of Monte Carlo replications.  Lower bias shows 

more accurate parameter recovery.  Then, we examined the proportion of treatment effect 

estimates found to be significant at the .05 level by sample size and scoring method. 

Results. There were no convergence failures, and parameter recovery when fitting the 

true model to the generated data was excellent (see Supplemental Materials Table A1). Further, 

model fit was excellent, with an average RMSEA of ~.035 (other fit statistics like the CFI 

showed comparable fit).  Figure 3 shows box plots of the estimated treatment effects across all 

 
7 One limitation of this study is that we use two different estimators: WLSMV when treatment status is endogenous, 

and maximum likelihood when treatment status is considered to be exogenous. We use WLSMV for the former 

because the model requires a correlation between two residuals, including that of a categorical variable. Such 

residuals cannot be straightforwardly estimated when using categorical maximum likelihood. Thus, we cannot 

entirely rule out that some differences exist between results from the two estimators (in fact, results can and do 

differ because the estimators shift between sharp and fuzzy specifications, which differ in how they are 

parameterized). 



1,000 replications by loading condition and scoring approach for 500 simulees (general trends in 

the results were similar for smaller sample sizes).  As the figure makes clear, estimated treatment 

effects, on average, matched the true treatment effect when estimated in a latent variable 

framework.  This finding applies both to sharp and fuzzy RD designs.  By contrast, estimated 

treatment effects were much lower when indicators were misweighted using a sum score.  For 

example, under the worst loading condition where λ = [1,.6,.5,.4], the sum score estimate of the 

treatment effect was ~.13 under the sharp design and ~.12 under the fuzzy.  Thus, when the 

loadings were low, the true treatment effect was understated by roughly 40% using a sum score.   

While differences in the estimates using a sum score model versus a less constrained 

measurement model was the main story of interest, one should also note that using a sum score 

when its assumptions were violated also impacted power.  Using sum scores reduced the 

proportion of treatment effect estimates found to be significant by approximately ten percentage 

points, even with a true treatment effect of .20 SDs.  Thus, even if one only cared about whether 

the intervention was found to have a significant impact, misweighting the indicators has a 

nonnegligible effect. 



 
 

Figure 3. Bar diagrams showing estimated treatment effects across all 1,000 replications by 

condition for Simulation Study 2 (Sum Score Simulation).   

 

Note. “Lat” means a latent variable model and “Obs” means a sum score model.  Load = 1 

corresponds to the first loading condition, Load = 2 to the second, and Load = 3 to the third. 

 

Simulation Study 2. Measurement Noninvariance between Control and Treatment 

 In this simulation study, we examined the effect of measurement invariance failures on 

treatment effects in an RD framework.  Such failures might occur if, say, a growth mindset 

intervention (with children assigned on the basis of test scores) actually changed how the student 

perceived growth mindset as a construct, which has been shown to occur in RCTs (e.g., Oort, 

2005).  Thus, this second simulation study is similar to the first one, but with measurement 

noninvariance induced between control and treatment groups (see Equation 12). 



 To simulate noninvariance, we generated data using a multigroup model in Mplus, then 

estimated treatment effects using a matching latent variable model and a sum score model that 

ignored group differences (sum score models cannot account for such group differences, at least 

not directly).  To make sure the invariance failures were realistic, we loosely followed 

measurement model parameters from Fokkema et al. (2013), who examined noninvariance of 

items from a common depression measure.  In line with their findings, we induced noninvariance 

by using the parameters in Figure 2 for the control group, then reducing the loadings in the 

treatment group by .20 units for indicators two through four.  We also increased the intercept for 

the first indicator by .10 unit for the treatment group.   

Results.  As one might expect, bias in the estimated treatment effect was substantial when 

noninvariance was not accounted for in the model.  When estimating the treatment effect using a 

latent variable model, bias was practically zero (on average) and upwards of 98% of the 

replications produced results that were significant at the .05 level.  By contrast, when using a 

sum score, the mean estimated treatment effect across the replications was ~.14 for the sharp 

design and the percent of results found to be significant decreased by more than 10 percentage 

points.  When using a sum score with the fuzzy design, the mean estimated treatment effect was 

.15 units, also with a roughly 10 percentage point decrease in significant estimates relative to the 

SEM estimates.  Thus, failing to account for measurement noninvariance could meaningfully 

impact point estimates and Type 2 error rates in an RD design. 

Demonstration on How to Fit an RD as a Latent Variable Model 

 Having illustrated potential benefits of estimating RDs as SEMs mathematically and via 

Monte Carlo simulation, we now walk through the steps associated with conducting a fuzzy RD 

as an SEM.  To strengthen the connection between the SEM approach and the typical 2SLS 



approach used in econometrics, we begin by estimating RDs in a 2SLS framework, then show 

how to produce similar results in a path diagram framework before extending the model to an 

SEM that includes latent variables.  We present only the fuzzy RD here because the fuzzy design 

requires all the steps used in a sharp RD plus additional steps that require elaboration.   

  Note that RDs can support causal claims, but only when its assumptions are met.  For 

example, treatment effect estimates could be biased if there is some form of manipulation of 

scores near the cutoff, or if there is evidence that there are alternative mechanisms other than 

treatment assignment that influence outcomes and that treatment assignment is therefore not 

random.  Given the importance of the assumption of random assignment, most RD analyses 

begin with a series of validity checks to find evidence suggesting that assumptions of the model 

have not been violated.  We do not present those validity checks here, but a description of those 

preliminary analyses is available in Section B of the Supplemental Materials and the code for the 

validity checks is in Section C of the Supplemental Materials.   

 While the data used in this demonstration are simulated, parameters are based roughly on 

results from an empirical study using real data (Authors, under review).  Throughout the 

demonstration, we will use a hypothetical that loosely follows a study conducted by Kendall et 

al. (2004).  In their study, children were treated early for anxiety, and then the effect of treatment 

on later substance abuse was examined.  In our hypothetical, children are given an anxiety 

diagnostic measure.  Patients with a sufficiently high scores on the anxiety measure (i.e., who are 

more anxious) receive a cognitive–behavioral treatment for anxiety, though not all of them above 

the cut score ultimately receive the treatment.  Importantly, given our focus on how the 

dependent variable is measured, the construct of anxiety is not considered as a latent variable in 

our hypothetical. Rather, the sum or scaled scores for anxiety are used as the "observed" forcing 



variable. In the data, variables 𝑦𝑖1 through 𝑦𝑖4 are the outcomes of interest (the indicators 

representing substance abuse, e.g., survey items or scores on separate measures).  For simplicity, 

they are continuous with a mean of zero and variance of one to avoid the complication of 

interpreting categorical dependent variables, but the same principles apply to categorical data.   

 When using observed scores in the model, we produce the score by taking the mean of 

the four indicators. This approach was taken to match what is normally done in practice and to 

mirror the 2SLS results. However, to ensure differences in treatment effect estimates between 

mean score and latent variable approaches are due to how the loadings are treated rather than 

differences in scales, we replicated results by mimicking mean scores using a highly constrained 

measurement model that scales the mean score and latent variable results comparably (both 

constrain the first loading to one). All results we report below using actual mean scores held 

when producing those mean scores using a constrained measurement model. 

In the generating model, there is a known treatment effect from being above the cut score 

of .60 units, measured in units of 𝑦𝑖1. Thus, we use data based on known parameters, but the 

parameters differ from those in the earlier simulation studies to show that results hold even with 

a different data-generating model. The data also consist of a forcing variable, 𝑟𝑖 (here an anxiety 

diagnostic score centered at a cut score), 𝑡𝑖 for a given individual’s treatment status (one if the 

person received treatment, zero otherwise) and an instrumental variable 𝑧𝑖 (equal to one when 

the person was above the cut score on the anxiety measure, zero otherwise).           

All 2SLS models are estimated in Stata 16 (StataCorp, 2019) and all SEMs are estimated 

using Stata’s SEM package and Mplus Version 8.4 (Muthen & Muthen, 2018).  Code for each 

model is provided in Section C of the Supplemental Materials.  While we use specific code and 



statistical programs for the demonstrations, our focus throughout is on conceptual understanding 

that is not specific to any software.   

Estimation Using 2SLS in Stata 

After having obtained reassurance about the validity of the RD design (as detailed in the 

Supplemental Materials), we proceed to estimating the treatment effect through 2SLS.  We first 

produce bin plots (in our example, mean substance abuse scores on the vertical axis estimated 

separately for set increments of the forcing variable on the horizontal axis).  For these analyses, 

the dependent variable is an observed score obtained by taking the mean of 𝑦𝑖1 through 𝑦𝑖4 for 

each person.  In Figure 4 below, the blue markers represent the outcome of interest, binned by 

values of 𝑟𝑖. A visible discontinuity between the linear fit lines on the two sides of the cut score 

suggests a treatment effect. We will test this formally using 2SLS. 

 

Figure 4.  Bin plot of the outcome of interest (self-efficacy) by forcing variable score 

We conduct 2SLS estimation in Stata for patients within +/- 1.5 SDs of the cut score.  

2SLS estimation produces predicted values of 𝑡𝑖 for each study participant as probabilities, 

leading to an interpretation of the treatment effect as a mean contrast with the control group. In 

this demonstration, that coefficient on 𝑡𝑖 in the second stage is 1.15, indicating that treatment for 



anxiety resulted in an improvement of 1.15 units on our observed (mean) substance abuse 

measure.8   

Estimation in SEM using Stata/Mplus 

 In what follows, we briefly compare results from four models to walk readers from the 

2SLS estimate to the latent SEM estimate.  Those models include (1) mean score, 𝑡𝑖 treated as 

continuous; (2) mean score, 𝑡𝑖 treated as binary using a probit link; (3) latent variable estimate, 𝑡𝑖 

treated as continuous; and (4) latent variable estimate, 𝑡𝑖 treated as binary with a probit link.  

Thus, (1) should parallel the 2SLS estimate (where predicted values of 𝑡𝑖 for each study 

participant are probabilities), (4) is our preferred model, and (2)-(3) show the steps to get from 

2SLS to the preferred model. 

Mean Score, Continuous Treatment. We begin our presentation of the fuzzy RD 

approach in an SEM framework by showing the path diagram and estimated coefficients 

replicating the ivregress results using the path diagramming tool in Stata.  We start here to show 

that, per Figure 5, the ivregress and path diagram estimates match. Here, we treat 𝑡𝑖 as 

continuous not binary.9 While treating 𝑡𝑖 as continuous impacts the scaling of the treatment effect 

estimate, we can nonetheless produce mean score and latent variable estimates using this scaling 

(and using identical scales between mean scores and latent variables), then compare them. 

Unlike when using ivregress, in a path analytic framework the correlation between the residuals 

𝑒1and 𝑒2 is explicitly estimated. As explained in the background section on the fuzzy RD, this 

correlation is the mathematical expression of the endogeneity problem: treatment status is 

 
8 Following our use of ivregress, we also estimate the two-stage equations by hand using the probit link in the first 

stage.   
9 This approach must also be used when employing the SEM program in Stata because the only estimation option 

available for binary endogenous variables is maximum likelihood, which does not allow for residual correlations 

like the one between 𝑒1and 𝑒2. 



correlated with the error term in the outcome about which we care.  Code for this model is in 

Section C1 of the Supplemental Materials. 

 

Figure 5. Using observed scores and considering treatment continuous in a path analytic 

framework 

 

 This code can easily be replicated in Mplus as shown in Section C2 of the Supplemental 

Materials.  Table 1 crosswalks results from different model specifications and, as it shows, the 

treatment effect estimates using Stata versus Mplus match, with coefficients around 1.15.  Thus, 

both sets of results indicate that being in the treatment appears to cause a 1.15-unit increase in 

the mean score.  Again, when treatment status is treated as continuous, the units on the treatment 

effect estimate will differ compared to the data-generating model and results that use a probit 

link, but will be comparable between sum score and latent variable models that both treat 𝑡𝑖 as 

continuous. 

Table 1.  

 

 

   

 

 

Cross-walk of outcomes by model and software             

Model 

No.  

Model Description 

 

Stata File   Mplus File 

 

Treat. Effect 

Stata/Mplus (SEs) 

1 
 

Use mean score as the outcome, BW 

1.5, t treated continuous 

 
Supp. C1 

 
Supp.  C2 

 
1.147/1.147 

        
(0.203)          

2 
 

Use mean score as the outcome, BW 

1.5, t treated binary - probit 

 
Supp.  C1 (by 

hand) 

 
Supp.  C3 

 
0.441/0.441 



        
(0.080)          

3 
 

Use latent variable as the outcome, 

BW 1.5, t treated continuous 

 
Supp.  C1 

 
Supp.  C4 

 
1.497/1.497 

        
(0.265)          

4 
 

Use latent variable as the outcome, 

BW 1.5, t treated binary 

 
Not possible 

 
Supp.  C5 

 
0.579 

 

 

 

 

   

 
(0.105) 

                   

 

 

 

   

 

 

 

Mean Score, Binary Treatment. Next, we show results that treat 𝑡𝑖 as categorical using 

the probit link in Mplus, but that continues to use a mean score. Section C3 of the Supplemental 

Materials provides Mplus code that treats 𝑡𝑖 as categorical using WLSMV, the Mplus default 

estimator, which allows for a correlation between the residuals.  As the results in Table 1 show, 

treating 𝑡𝑖 as categorical and using a probit link has led to a rescaling of the coefficient on the 

path from the treatment to the mean score.  Specifically, a one SD increase in 𝑡𝑖*, the latent 

variable presumed to underlie 𝑡𝑖, appears to cause a .44-unit increase in the mean score.  Here, 

the mean score understates the true score largely because the true loadings on the indicators are 

quite low (with the exception of the first loading, which equals one in both the true and estimated 

models), and therefore indicators are misweighted in the observed score model, leading to an 

understated treatment effect (as described in the background section). As mentioned previously, 

this result holds when producing mean score results via a highly constrained measurement model 

that helps avoid scaling differences between mean scores and latent variables. 

Latent Variable, Continuous Treatment.  Next, one can estimate the fuzzy RD model 

using a latent variable estimate of the dependent variable in a single SEM framework.  Figure 6 

below is the path diagram for that model using the path diagramming tool in Stata, replete with 

estimated coefficients. This model fits the data quite well (e.g., RMSEA<.04), better than the 



other competing models in the demonstration.  Here, the latent variable is scaled by constraining 

the loading on the first indicator, 𝑦𝑖1, to 1.  Since Stata only allows for maximum likelihood 

estimation in its generalized SEM package, we cannot specify that 𝑡𝑖 is a dependent categorical 

variable and include a covariance in the residual terms, 𝑒1 and 𝑒6.  Thus, results are comparable 

to those using a sum score and treating 𝑡𝑖 as continuous.  Based on the path diagram, receiving 

the treatment causes a 1.5 unit increase in the outcome measured in units of 𝑦𝑖1.  This estimated 

treatment effect is higher than the one produced using a mean score due primarily to the mean 

score’s misweighting of the indicators (constraining all loadings and residuals in the 

measurement model equal). 

 

Figure 6. Path diagram for an RD estimate using a latent variable 

Equivalent code for this model in Mplus is provided in Section C4 of the Supplemental 

Materials.  Estimates in Stata versus Mplus (shown in Table 1) are identical to the hundredths 

place.  

 Latent Variable, Binary Treatment.  Last, we fit a latent variable model that treats 𝑡𝑖 as 

binary using a probit link (our preferred model given the data-generating model and results from 



the prior simulations). This model can only be estimated in Mplus with an estimator like 

WLSMV and not in Stata, which only allows maximum likelihood.  We estimate a model that 

treats 𝑡𝑖 as binary (per the probit link, the model assumes a normally distributed variable with SD 

of 1 underlies the observed treatment status) and sets the scale of the latent variable by 

constraining the loading on the first indicator to 1.  The code for this model is not provided 

separately because it is identical to the Mplus code in Section C4 of the Supplemental Materials, 

but no longer comments out the line indicating that 𝑡𝑖 is categorical.  As illustrated in Table 1, 

the coefficient on treatment status is .58 units, measured in units of 𝑦𝑖1.  This value is very close 

to the true value of .60 units, likely differing due to sampling error resulting from using only a 

single replication of the generated data.  

Making Sense of the Demonstration Results 

Examining Effects of Using Observed/Mean Scores. Just as in the simulation study, 

using an observed/mean score results in lower estimated treatment effects than using a latent 

variable model.  For example, when using a probit link for treatment status, the mean score 

model produced an estimated treatment effect that was .14 SDs lower than when using a latent 

variable model.  This result is not surprising given the loadings tend to be well below one, which 

would lead to a lower observed treatment effect compared to the latent variable-based estimate 

(per Equation 8).  Thus, even when using a separate data-generating model than in the simulation 

studies, the results are consistent with misweighting of indicators that can occur when 

observed/mean scores are used. This result held even when replicating the mean score results 

using a highly constrained measurement model that placed the mean score and latent variable 

results on comparable scales. 



Examining Bias from Measurement Invariance Failures. Our second simulation study 

showed that failures of measurement invariance between control and treatment groups can bias 

treatment effect estimates in both sharp and fuzzy RDs.  However, we do not walk through how 

to examine noninvariance in this demonstration, in part because there are so many existing 

resources on this process that already exist.  For example, there are tutorials on general failures 

of invariance (Wu et al., 2007), testing for longitudinal invariance (Widaman et al., 2010), and 

testing for longitudinal invariance with categorical indicators (Liu et al., 2017).  More relevant to 

the RCT and RD contexts, Oort (2005) showed how to test and correct for response shifts that 

can bias treatment effect estimates in an SEM framework.  Such an approach could be extended 

straightforwardly to the RD-as-SEM approach we describe. 

Estimating Measurement Model Parameters Based on All Participants Versus Those 

Within the Bandwidth Only.  A potential wrinkle in fitting RDs as SEMs is that RDs are only 

estimated using participants within a desired bandwidth.  This approach raises a question: Which 

participants should be used to estimate measurement model parameters?  One option might be to 

estimate the measurement model parameters using only those participants within the bandwidth 

(i.e., simultaneous with estimation of the structural parameters that constitute the RD model).  

This is the approach taken in our simulations and demonstrations described above.   

However, our simulations and demonstrations assume the optimal bandwidth is quite 

large (±1.5 SDs from the cut score).  Another option might involve estimating the measurement 

model parameters with the whole sample, then fixing them when estimating the RD parameters 

using only participants within the bandwidth. The implications of this choice are unknown, 

especially when the optimal bandwidth is smaller.  To help applied researchers understand the 

implications of this tradeoff, we conducted another simulation study using smaller bandwidths, 



then estimating measurement model parameters based on (a) only simulees within the bandwidth 

(and therefore concurrently with the RD structural parameters) and (b) all simulees then 

constraining those parameters when estimating the RD parameters limited to simulees within the 

bandwidth.  Those results can be found in Section E of the Supplemental Materials.  While 

treatment effects were generally insensitive to this issue, we did find downward bias in treatment 

effect estimates when the bandwidth was very small (+/- .25 SDs), likely because the sample size 

was insufficient to estimate unbiased measurement model parameters.  More research is needed 

on this issue; however, initial results suggest researchers may benefit from first estimating 

measurement model parameters using the whole sample, then fixing those parameters when 

estimating the RD parameters only within the bandwidth.  

Discussion 

 Ideally, researchers interested in making a causal claim would implement an RCT.  

Unfortunately, randomization is often not feasible for a host of reasons.  A quasi-experimental 

alternative is to use an RD design when treatment is assigned on the basis of a cut score.  In such 

cases, if one can assume that study participants immediately on either side of the cut score are 

identical other than measurement error, then causal claims about treatment can be made for 

individuals proximal to the cut score. When this assumption is met, the RD design has the 

advantage of high internal validity (though generalizability may be limited given results only 

apply to participants within the bandwidth).  

To date, most studies that use an RD design do not fit the RD in an SEM framework (in 

fact, measurement error is often ignored altogether).  In this study, we began by showing 

mathematically and via simulation that relying on sum scores when conducting an RD can result 

in estimates of the treatment effect that differ substantively compared to using less constrained 



measurement models.  We investigated two primary reasons for which these differences could 

occur.  First, as McNeish and Wolf (2020) pointed out, using a sum score can be equivalent to 

fitting a measurement model with extremely restrictive assumptions like equal weighting of the 

indicators and equal error variances.  Wrongly imposing such assumptions can lead to 

fundamental misinterpretations of test and survey scores, including in experimental settings 

(Bauer & Curran, 2015; Kang & Hancock, 2017; McNeish & Wolf, 2020).  Our results show that 

this form of model misspecification can severely impact RD-based treatment effect estimates, in 

some cases resulting in estimated treatment effects that are only 60% of true effects and 

increasing Type 2 errors.   

Second, fitting a measurement model instead of using sum scores allows the researcher to 

identify and address measurement invariance failures that have been shown to occur in 

experimental and quasi-experimental studies (e.g., Oort, 2005).  Failing to account for response 

shifts and other forms of noninvariance can lead to bias, possibly compounding the bias already 

introduced through the model misspecification that sum scores often represent.  In our 

simulation, we showed that control-treatment invariance failures downwardly biased treatment 

effect estimates when using sum scores by ~.05 SDs (25% of the true treatment effect) and 

increased Type 2 errors.  By contrast, SEM-based estimates of the treatment effect were unbiased 

and showed practically no Type 2 errors. 

Having begun to establish the benefits of fitting RDs as latent variable models, we 

conducted a demonstration to show how RDs can be fit in an SEM framework using Stata and 

Mplus.  The tutorial is meant to reinforce potential benefits of estimating RDs in a latent variable 

framework while also giving applied researchers in psychology the tools needed to fit such 

models.  Further, by cross-walking the 2SLS and SEM approaches to RD estimation, we hope 



this paper will help econometricians incorporate models more common in psychology into their 

own work.   

As psychologists hopefully begin to use the models like the ones we describe more, a few 

key differences between RCTs and RDs should be kept in mind, especially limitations of the 

latter. In RCTs, the treatment and control data overlap along all values of the assignment 

variables. In RDs, the treatment and control data do not overlap at all, and parametric or 

nonparametric regression methods are used to separately predict treatment and control group 

values of the outcome at the cutoff. Such prediction depends heavily on appropriate choice of 

functional form and bandwidth, making the RD prone to bias (Chaplin et al., 2018). Another key 

limitation to RDs is their external validity: RDs estimate LATEs, and the results are not 

generalizable to participants whose running variable values are far away from the cut score.  

These limitations should be kept in mind when considering whether to use RD. 

Limitations and Future Directions 

A few limitations of the study bear mention.  First, we did not examine the effect of 

including a measurement model for covariates used in the RD.  Such an approach could change 

results, and possibly expand the benefits of fitting RDs in a latent variable framework. For 

example, RDs often include participant background characteristics as covariates even though 

they should not impact the treatment effect assuming random assignment within the bandwidth.  

Such covariates are included because they can reduce the standard errors on the treatment effect. 

If the covariates had their own measurement model and measurement error was accounted for, 

then controlling for the (more precisely represented) covariates could benefit the RD by further 

improving precision.  Examining the effect of accounting for measurement error in covariates in 

an RD using SEM is worthy of future exploration.   



Relatedly, we did not consider the use of latent variables for the forcing variable, in part 

because RD assumes the forcing variable is measured with error, and that participants just on 

either side of the cut score are ignorably assigned.  While there are some potential benefits to 

using latent variables to better understand the forcing variable (e.g., Rokkanen, 2015), we did not 

investigate that issue given the complexities of such a decision, which are beyond the scope of 

our study.  On one hand, removing all measurement error from the forcing variable would be 

problematic because then there would be substantive differences on that variable for participants 

just on either side of the cut score, though one could debate just how substantive the differences 

are.  On the other, latent variable approaches can be used with the forcing variable. For example, 

many RDs in education employ achievement tests scored using IRT models that could help 

account for basic model misspecification that occurs using sum scores, but do not purge scores of 

all measurement error. Additional detail on this issue is provided in other studies, including 

Rokkanen (2015) and Angrist and Rokkanen (2018). 

In fact, one could even imagine scenarios where failing to account for measurement 

model misspecification in the forcing variable might threaten the fundamental assumption of 

exchangeable study participants proximal to the cut score. For example, if the forcing variable 

was based on a depression survey scale, then a sum score would weight items about trouble 

sleeping and suicidality equally, but a latent variable model likely would not. Hypothetically, 

participants just on either side of a sum score-based cutoff might be very different in terms of 

their true depression if a sleep item moved one respondent above the threshold and the 

suicidality item moved another respondent below. Whether mistakenly weighting such items 

equally occurs in a systematic way around the cut score or simply washes out is difficult to say, 

but is certainly worthy of additional investigation. Regardless, this form of measurement model 



misspecification is very different than the random measurement error in the forcing variable that 

is beneficial to the RD design. 

Related to the potential benefits of our approach, our simulations were meant primarily as 

brief demonstrations and were not meant to be exhaustive.  For example, the simulations could 

have examined a host of different measures and measurement models, such as using different 

numbers of items, testlets, or multiple scales with item cross-loadings.  Understanding how 

results differ dependent on such decisions is important for future research.  Further, our brief 

simulation examining how the decision about estimating measurement model parameters with 

the full sample or only within the bandwidth was very limited given it was meant to supplement 

the main study.  The impact of the decision about which participants to use when estimating 

measurement model parameters should be investigated more in future research, including in 

cases where the data generation assumes measurement model parameters differ for participants 

within the bandwidth relative to those outside. 

In practical terms, many study designs that employ RDs assign individuals to treatment 

on the basis of some cluster (for example, patients are clustered within doctors).  Failing to 

account for such clustering could affect results in at least two ways. First, treatment effect 

estimates could be biased, though this problem would likely be less worrisome if, for example, 

all clusters were the same size. Second, power is already an issue in RD designs because only 

units near the cut score are used (Schochet, 2009), and that issue could be exacerbated in a 

cluster design.  For instance, if there is a non-trivial intraclass correlation coefficient (ICC), the 

standard errors would not be consistent, which could in turn impact Type 1 error rates.   Given 

our own study is meant as a tutorial on how to implement RDs in an SEM framework, fully 

exploring this issue is beyond the scope of the study, including issues of power more generally.  



However, the model we propose could be straightforwardly adapted to have a multilevel 

structure (Morell et al., 2020).  Fully enumerating that model is worthy of additional research. 

Conclusion and Additional Resources 

For those who want to learn more, there are a variety of resources.  We highly 

recommend Sande and Ghosh (2018) for a gentle introduction to the logic of IVs, including in a 

path analytic framework.  There are also several articles that examine how to approach quasi-

experimental methods other than RD using SEM (e.g., Leite et al., 2019; Raykov, 2012; 

Rodríguez De Gil et al., 2015).  For a broader view of the econometric and quasi-experimental 

literature outside of SEM including RDs, Angrist and Pischke (2008) provide a thorough and 

highly readable introduction.  Researchers coming from a quasi-experimental background but 

who know less about SEM might examine the Stata tour of models in the user manual, which is 

quite thorough, or the examples in the Mplus user’s manual, especially in conjunction with a 

classic text like Bollen (1989).   

We hope that our results make the potential benefits of fitting RDs in a latent variable 

framework more apparent, and that we have given applied researchers in psychology the 

background and tools needed to estimate such models.  Our results indicate that estimating an 

RD with sum scores as the dependent variable when the indicator weights are not uniform in the 

data-generating model can impact treatment effect estimates in ways that are nonnegligible, 

including increasing Type 2 error rates.  We also show that fitting RDs as SEMs largely 

mitigates those sources of bias when model assumptions are met. 

  

https://www.stata.com/manuals13/sem.pdf
https://www.statmodel.com/ugexcerpts.shtml
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Section A. Additional Simulation Study Details 

 

  



 

Section B. RD Validity Checks 

Preliminary Analyses and Estimation in Stata  

In this section we demonstrate how to implement the fuzzy RD in Stata.  We start with 

tests for validity of our RD design, proceed to estimation, and finally check the robustness of our 

estimates.  The corresponding Stata do-file is provided in Section C1 and the data file is included 

in the supplemental materials. The validity of the RD design (both sharp and fuzzy) hinges on 

two main assumptions (Lee & Lemieux, 2010). Therefore, the plausibility of these assumptions 

is assessed prior to estimation of the treatment effect.  First, we assume the forcing variable is 

not precisely manipulatable. If, in our hypothetical, patients  can precisely manipulate the test 

scores used to determine participation in treatment, pushing some patients over/under the cut 

score to gain/lose access to treatment, treatment assignment would no longer be as good as 

randomly assigned. If there is evidence of such “heaping”, or significantly higher density, on 

either side of the cut score, we might suspect units above and below the cut score differ in certain 

ways, which would make treatment assignment not as good as random. We therefore perform 

visual and statistical tests on density of 𝑟𝑖 just above and below the cut score.10 

Second, we assume that all patients are fully exchangeable around the cut score, differing 

primarily due to measurement error on their test score.  Thus, all potential outcomes other than 

our dependent variable should be continuous at the cut score. Since all potential outcomes are not 

observed, we check to see if variables related to the outcomes are continuous. This check is to 

ensure that units (in our case patients) assigned to the treatment at the cut score are comparable 

 
10 One should note that manipulation could still occur without visual evidence of heaping if an equal number of 

students were moved up and moved down in accordance with some unobservable reason behind the teacher’s 

decision-making that is correlated with potential outcomes 



to units that are assigned to control. To further examine whether units around the cut score are 

comparable, we test the balance of pretreatment covariates (𝑥𝑖 in this example) at the cut score.  

Finally, fuzzy RD requires one additional validity check beyond the first two, which are 

the same for sharp RDs. The key difference between the sharp and the fuzzy RD designs is that 

treatment take-up is not 100% in the latter. As with all 2SLS estimation, a strong first stage, 

signifying that assignment strongly predicts actual treatment, is vital to avoid bias and 

imprecision in the treatment effect estimate (having an instrument that strongly predicts 

treatment is also desirable in SEM). We therefore perform an additional test for the strength of 

the instrument prior to implementing the RD model.  

Validity Test 1. Density Near the Cut Score. To test this aspect of the RD design, we 

examine the density of the forcing variable around the cut score visually and statistically.  

First, a histogram of 𝑟𝑖 is generated (Stata code C1, line 37), shown in Figure B1. The density 

immediately to the right of the cut score (red vertical line at 0) looks similar to the density to the 

left of the cut score, suggesting no manipulation.   

 

Figure B1. Density plot of the forcing variable 



To further interrogate density balance, McCrary (2008) and Cattaneo et al. (2018) density 

tests are implemented (C1, lines 42-49). For parsimony, we will not provide details on those tests 

here (the citations should suffice for interested readers).  Figure B2 shows the results of the 

McCrary (2008) test. Unlike the histogram, the density of 𝑟𝑖 above the cut score appears higher 

than below the cut score; however, the difference is not statistically significant, and the 

confidence intervals in the figure are overlapping. Thus, we gain some reassurance that scores on 

the forcing variable are not being manipulated. 

 

Figure B2. Results from the McCrary (2008) test 

Results from the Cattaneo et al. (2018) test, presented in Figure B3 below, are very similar 

(p=.157) to those from the McCrary (2008) test, providing further evidence that any heaping is 

not statistically significant. 



 

Figure B3. Results from the Cattaneo et al. (2018) test 

Altogether, while some graphs suggest there may be slight difference in the density of 𝑟𝑖 

on either side of the cut score, those differences are not statistically significant.  Therefore, there 

does not appear to be evidence of density-related manipulation at the cut score. In field studies, 

researchers also interrogate potential for manipulation in practice in addition to conducting 

density tests. For instance, one might ask if the tests were scored by doctors and if thresholds 

were known to them in advance, a scenario that could invite manipulation.  

 Validity Test 2. Covariate Balance. Next, we test if units assigned to treatment and 

control close to the cut score are comparable based on observed baseline characteristics (as we 

would hope). We look for evidence that pretreatment covariate 𝑥𝑖 is continuous at the cut score. 

For both this balance test and for estimating the treatment effect, we retain only data within a 

selected bandwidth. For illustrative purposes, we use -1.5 < 𝑟𝑖 < 1.5. Covariate 𝑥𝑖 is regressed on 

𝑧𝑖, 𝑟𝑖, and the interaction term 𝑟𝑧𝑖 (C1, line 54). The estimate for 𝑧𝑖 is the coefficient of interest, 

with statistical significance indicating the units in the treatment and control conditions may not 

be comparable and the RD design potentially invalid.  For example, if one were to think of 𝑥𝑖 as 

a measure of socioeconomic status (SES), the logic of RD designs assumes patients on either 



side of the cut score are similar in terms of SES, but a significant coefficient on 𝑧𝑖 in this case 

would suggest they are not.  In our data, the non-significant t-test suggests the baseline covariate 

𝑥𝑖 is continuous at the cut score.   

Beyond this specific example, one would perform this test using several covariates.  If 

multiple covariates show significant discontinuities, then the unfortunate reality is that the 

project may not be feasible given one would worry that results on the main outcome are also 

spurious.  However, if only a single covariate among many produces significant results, then one 

option is to control for that covariate in the RD model.  In general, quasi-experimental studies 

often involve complicated decisions around how to proceed if a single validity check fails. 

Validity Test 3. Instrument Strength. As explained earlier, the 2SLS framework requires 

that the instrument 𝑧𝑖 (being above the achievement test cut score) strongly predicts actual 

treatment 𝑡𝑖 (taking advanced courses). We begin testing this assumption by visually examining 

treatment take-up for a subsample of units within a selected bandwidth of the cut score, -1.5 < 𝑟𝑖 

< 1.5 (C1, lines 68-81). For ease of visualization, values of 𝑟𝑖 are binned in increments of 0.05 

(C1, line 69), and the variable of interest (probability of treatment, here attending advanced 

courses) are averaged for each bin (C1, line 72). 

As shown in Figure B4 below, units (students) below the cut score have a low (but not 

zero) probability of receiving the treatment, while units above the cut score have a high (but not 

one) probability of receiving treatment. This reflects imperfect compliance with the treatment 

assignment: some units assigned to treatment did not receive it, while others not assigned to 

treatment did. However, there is a visible jump at the cut score, suggesting that assignment 

strongly predicts actual treatment. We will return to test this discontinuity statistically after 

looking at the mean outcome visually. 



 

Figure B4. Bin plot of treatment status by forcing variable score 

We test the strength of the instrument more formally using data within the selected 

bandwidth (-1.5 < r < 1.5) and a first-stage model with linear splines, by regressing 𝑡𝑖 on 𝑧𝑖, 𝑟𝑖, 

and the interaction term 𝑟𝑖𝑧𝑖 (C1, line 90). Specifically, we conduct an F-test for the estimate of 

the regression of treatment status on the instrument to determine if 𝑧𝑖 is a strong predictor of 𝑡𝑖 

(C1, line 91). The commonly used threshold for a strong instrument is an F-statistic of 10 (or 

ideally much higher). In our data, the instrument 𝑧𝑖 produced an F-statistic of 96.28, suggesting it 

is a very strong instrument and providing support for the 2SLS approach.  

RD Estimation. Having obtained reassurance for the validity of the RD design and a 

strong first stage, we proceed to estimating the treatment effect through 2SLS.  As with 

examining the strength of the instrument, we first produce bin plots, in this case with the 

outcome on the vertical axis and the forcing variable on the horizontal (C1, lines 106-124).  For 

these analyses, the dependent variable is an observed score obtained by taking the mean of 𝑦1 

through 𝑦4 for each person (C1, line 106).  In Figure B5 below, the blue markers represent the 



outcome of interest, binned by values of 𝑟𝑖. A visible discontinuity between the linear fit lines on 

the two sides of the cut score suggests a treatment effect. We will test this formally using 2SLS. 

 

Figure B5.  Bin plot of the outcome of interest (self-efficacy) by forcing variable score 

Stata has several commands for 2SLS estimation, but the most relevant is likely ivregress 

(in Stata versions 15+, one could also use eregress11).  In the ivregress code (C1, line 139), we 

specify that 𝑧𝑖 is the instrument for 𝑡𝑖.  After the “if” statement, we are (a) limiting to a 

bandwidth of our choice (+/- 1.5 units of 𝑟𝑖) and (b) asking for output from the first stage of the 

two-stage regression (using the “first” option below).  

As mentioned previously, 2SLS estimation will produce predicted values of 𝑡𝑖 for each 

study participant as probabilities, leading to an interpretation of the treatment effect as a mean 

contrast with the control group. In this demonstration, that coefficient on 𝑡𝑖 in the second stage is 

1.15, indicating that treatment (attending advanced courses) resulted in an increase of 1.15 units 

on our observed (mean) survey score. This is essentially the discontinuity in Figure B5 divided 

 
11 The main difference between ivregress and ergress is that the latter allows one to fit the first stage using either a 

probit or linear probability model.  However, ivregress only allows one to fit a linear probability model that assumes 

the treatment indicator is continuous.  Despite this limitation of ivregress, it is often used for fuzzy RDs, even those 

with a binary treatment status. 



by the discontinuity in Figure B4, or, in the IV framework, rescaling the intent-to-treat effect by 

the first-stage estimate (Equation 7).  Following our use of ivregress, we also estimate the two-

stage equations by hand using the probit link in the first stage.  In one version, we use predicted 

probabilities for 𝑡̂𝑖, which matches the ivregress estimate (though note that the standard errors are 

slightly different between the two, and incorrect for the by-hand version).  In the other version, 

we use a linear prediction for 𝑡̂𝑖.  As you will see in an SEM framework, this point estimate will 

match the one that uses a probit link for treatment status in Mplus following a 𝑡∗ interpretation.  

Generalizability of the Fuzzy RD Results. The RD design generates credibly causal 

estimates of treatment effects, but with some key limitations to generalizability. First, the 

estimates are local average treatment effects. That is, results may not be generalizable to units 

(patients) whose forcing variable values are far from the cut score. Second, in the presence of 

treatment effect heterogeneity, the estimates would only be defined for compliers. In other 

words, the results may not be generalizable to always-takers (patients who would always be 

treated regardless of their score) and never-takers (patients who would never end up getting 

treatment). For more details, see Bertanha and Imbens (2014). 

 

  



Section C. Stata and Mplus Code 

Syntax files and data are available separately as part of the supplemental materials.  



Section D. Robustness Checks for the RD Design in Stata 

Since our treatment effect estimate may be sensitive to our choice of bandwidth and the 

functional form of the RD model, we test for robustness by varying the bandwidth and by adding 

quadratic terms to our equation (Stata code C1, lines 150-156). Although RD studies often test 

relative model fit (mostly between the linear and quadratic models, as the use of higher-order 

polynomials is not recommended) and report results for a preferred specification, model fit is not 

the focus. Thus, the preferred econometric approach often involves testing different functional 

forms and their fit, but ultimately estimating the model with different functional forms and 

bandwidths to ensure results are insensitive to modeling decisions.  This approach is quite 

different than how someone more familiar with SEM might approach the problem, namely 

testing model fit, selecting a preferred model, and reporting only relevant results.   

Table D1 shows the results from using bandwidth -1 < 𝑟𝑖 < 1. The treatment effect 

estimate (1.31) has a confidence interval that overlaps our original estimate using a bandwidth of 

(-1.5 < 𝑟𝑖  < 1.5).  

Table D1. 2SLS results from using bandwidth=1 

 



 

As shown in Table D2, adding quadratic terms 𝑟𝑖
2  and 𝑟𝑖

2𝑧𝑖  produces an estimate of 1.41, 

with a confidence interval that also overlaps the estimate from the linear model. Though not 

reported, using other bandwidths produced similar results.  Thus, we can feel fairly certain that 

varying the bandwidth and functional form does not substantively change our results.   

 

Table D2. 2SLS results from using quadratic model 

 



 

 

 

  



Section E. Simulation Investigating Impact of Estimating Measurement Model Parameter 

with All Participants Versus Those Within the Bandwidth 

A potential wrinkle in fitting RDs as SEMs is that RDs are only estimated using 

participants within a desired bandwidth.  One option might be to estimate the measurement 

model parameters using only those participants within the bandwidth (i.e., simultaneous with 

estimation of the structural parameters that constitute the RD model).  Another option might 

involve estimating the measurement model parameters with the whole sample, then fixing them 

when estimating the RD parameters using only participants within the bandwidth. The 

implications of this choice are unknown.   

To help investigate this issue, we redid the simulation studies with a range of bandwidths 

and slightly larger sample sizes (N = 5,000 and 10,000).  Two approaches were used to estimate 

the parameters in the measurement submodel of the SEM.  First, the data were subset to include 

only those simulees within the selected bandwidth and measurement and structural parameters 

were estimated together, including the treatment effect.  Second, measurement model parameters 

were estimated using the full sample, then those parameters were fixed when estimating the 

structural portion of the model based only on simulees within the bandwidth.  These two 

approaches were taken because RD analyses are, in practice, typically conducted using only the 

data within the optimal bandwidth (Imbens & Kalyanaraman, 2011; Robinson, 2011).   

Table E1 includes treatment effect estimates and RMSE for a model that estimates 

measurement model parameters based only on simulees near the discontinuity (i.e., within the 

desired bandwidth) and based on the whole sample.  In general, differences between models that 

estimate measurement model parameters within the bandwidth versus using the full sample differ 

little.  However, there is an exception to this finding.  When the sample size is 5,000 and the 



bandwidth is .25, calibrating based only on simulees within the bandwidth produced a 

downwardly biased treatment effect estimate.      
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Table E1 
            

 
Simulation Results for Measurement Model Parameters Based on All Simulees Versus those within the Bandwidth   

N Bandwidth 
 

Latent      

(Full Sample) 

s.e. RMSE 
 

Latent 

(Bandwidth) 

s.e. RMSE 
 

Sum s.e. RMSE 

5000 0.25 
 

0.206 0.010 0.006 
 

0.121 0.118 0.149 
 

0.180 0.009 0.020 

5000 0.5 
 

0.199 0.006 0.001 
 

0.197 0.006 0.003 
 

0.173 0.006 0.027 

5000 1 
 

0.199 0.004 0.001 
 

0.198 0.004 0.002 
 

0.173 0.004 0.027 

10000 0.25 
 

0.204 0.006 0.004 
 

0.187 0.006 0.013 
 

0.177 0.005 0.023 

10000 0.5 
 

0.199 0.004 0.001 
 

0.199 0.004 0.001 
 

0.174 0.004 0.026 

10000 1 
 

0.197 0.003 0.003 
 

0.197 0.003 0.003 
 

0.172 0.003 0.028 

                            

 

 

 


